
Deep Learning for Data Science
DS 542

Lecture 08
Gradients, Initializations,

 and Measuring Performance

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com

Today’s Plan

● Gradients Recap
○ Visualizing 2 Parameter Models
○ Backpropagation again

● Initialization
○ Forward and backward behavior
○ Derivation of decent initializations

● Measuring Performance
○ Train/test splits
○ Bias/variance trade offs

Reminder: you should be reading the book chapters too. There are extra readings
for Wednesday - see course web site or end of slides for links.

Visualizing Two Parameter Models

Loss function of the
Gabor model from last
time

Visualizing Two Parameter Models

Gradients of the loss
function

Backpropagation again

Repeating a couple key points

● Basic mechanics of efficient gradient computation
● Critical to understand initialization

Backpropagation and the Chain Rule

Most common operation

Backpropagation with Matrix Operations

(k-1) more of these when fully unwound

Initialization

Perhaps an obvious point -

● Initializing all parameters to zero is degenerate.
○ All units within a layer will see the same gradients.
○ All units within a layer will get the same updates.
○ All units within a layer will represent the same function.
○ All layers effectively become one wide.

● Generally do not want to start with any symmetries within layers
○ Different initializations are opportunities to learn different useful things.
○ Motivates random initializations.

Initialize weights to different variances

Exploding
gradients

Vanishing
gradients

Initialization Theory

Any math to guide us to better initializations?

● Exponential growth and shrinkage are predictable from chain rule.
● Can we scale the weights to avoid exponential behavior?

○ Goldilocks zone - not too big or too small
○ We should be able to calculate a more useful range of initial weights

● Perfect value management not needed
○ Want a variety of values and gradients…
○ Some hidden units will be inactive sometimes…

Aim: keep variance same between two
layers

Definition of variance:

Agenda

● The need for weights initialization

● Expectations Refresher

● The He (Kaiming) Initialization

Expectations

Interpretation: what is the average value of g[x] when taking into account the probability of x?

Consider discrete case and assume uniform probability so calculating g[x] reduces to taking average:

Common Expectation Functions

Rules for manipulating expectation

Agenda

● The need for weights initialization

● Expectations Refresher

● The He (Kaiming) Initialization

Aim: keep variance same between two layers

Definition of variance:

Aim: keep variance same between two layers

Aim: keep variance same between two layers

Aim: keep variance same between two layers

Consider the mean of the pre-activations:

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Aim: keep variance same between two
layers

0

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 1:

Rule 2:

Rule 3:

Rule 4:

Rule 1:

Rule 2:

Rule 3:

Rule 4:

From the definition of
expectation.

Only positive integral limits
because of ReLU

½ of the variance for zero mean
distribution

Aim: keep variance same between two layers

Should choose:

This is called He initialization or Kaiming initialization after Kaiming He (何恺明).

Since:

To get:

K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” Proc. IEEE International Conference on
Computer Vision, 2015, pp. 1026–1034. Accessed: Feb. 11, 2024.

He initialization (assumes ReLU)
● Forward pass: want the variance of hidden unit activations in layer k+1 to be

the same as variance of activations in layer k:

● Backward pass: want the variance of gradients at layer k to be the same as
variance of gradient in layer k+1:

Number of units at layer
k

Number of units at layer
k+1

Initialization with Non-Square Matrices

Exploding
gradients

Vanishing
gradients

Default Initialization in PyTorch

https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_uniform_

https://arxiv.org/abs/1502.01852

https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_uniform_
https://arxiv.org/abs/1502.01852

Initialization Note

A good initialization does not prevent gradient descent from changing the weights
a lot.

● A good initialization keeps the initial gradients modestly sized,
● And modest gradients reduce wild swings in parameters with gradient descent
● Smaller learning rates also help with this.
● Next week’s topic, regularization, will directly address this.

Limitations of Initialization

● No guarantees that the model will train to low losses
● No guarantees that training process won’t lead to large values or gradients
● No guarantees that the model won’t have lots of inactive units

○ In fact, the estimates adjusted for half being inactive!

● In fact, much of the network is often useless, and could be pruned away!

The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks
Neural network pruning techniques can reduce the parameter counts of trained networks by over 90%, decreasing
storage requirements and improving computational performance of inference without compromising accuracy.
However, contemporary experience is that the sparse architectures produced by pruning are difficult to train from the
start, which would similarly improve training performance.

We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them capable of
training effectively. Based on these results, we articulate the "lottery ticket hypothesis:" dense, randomly-initialized,
feed-forward networks contain subnetworks ("winning tickets") that - when trained in isolation - reach test accuracy
comparable to the original network in a similar number of iterations. The winning tickets we find have won the
initialization lottery: their connections have initial weights that make training particularly effective.

We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket
hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less than
10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and CIFAR10.
Above this size, the winning tickets that we find learn faster than the original network and reach higher test accuracy.

https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635

Measuring Performance

How do we do it?

MNIST Dataset
● 28x28x1 grayscale

images
● 60K Training, 10K Test
● “Is to Deep Learning

what fruit flies are to
genetics research”

28
28

2-3
day
s

But poorly differentiates model performance:

Model Type Accurac
y

Logistic Regression 94%

MLP 99+%

CNN 99+%

S. Greydanus, “Scaling down Deep Learning.” arXiv, Dec. 04, 2020. doi:
10.48550/arXiv.2011.14439.

MNIST1D

https://github.com/greydanus/mnist1d

“A large number of deep learning innovations including dropout,
Adam, convolutional networks, generative adversarial networks, and variational
autoencoders began life as MNIST experiments. Once these innovations proved
themselves on small-scale experiments, scientists found ways to scale them to
larger and more impactful applications.”

40

https://doi.org/10.48550/arXiv.2011.14439
https://github.com/greydanus/mnist1d
https://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1412.6980
http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114

MNIST 1D Dataset

Fixed, 1-D, length-12
templates for each of 10
digit classes

Generate dataset by
programmatically applying
6 parametric
transformations.

E.g. pad, shear, translate, correlated noise, i.i.d. noise,
interpolation. See https://github.com/greydanus/mnist1d/blob/master/building_mnist1d.ipynb

41

https://github.com/greydanus/mnist1d/blob/master/building_mnist1d.ipynb

MNIST 1D

Differentiates performance of different
model types much more than MNIST

Results

43

Train / Test Splits

When training a model, reserve a sample to test the performance when you are
done training.

● Original training data → train + test sets.

● Use train set to fit the model.
● Use test set to check the final result.

● Adapting to errors in the test is a good way to overfit your model.

MNIST1D Train and Test Set

● 1D, Length 40 samples

● 4,000 training samples

● 1,000 test samples (80/20 split)

Dataset Samples

45

Need to use separate test data

The model has not generalized well to the new data

46

Train / Validation / Test Splits

More advanced methodology

● Original training data → train + validation + test sets.

● Use train set to fit the model.
● Use validation set to make decisions about fitting the model.
● Use test set to check the final result.

Sources of Error

Three possible sources of
error: noise, bias and variance

49

Noise, bias, and variance

• Genuine stochastic nature of the
underlying model

• Noise in measurements, e.g. from sensors
• Some variables not observed
• Data mislabeled

https://images.app.goo.gl/2PuBhaFpfdL9Pyjb8

https://images.app.goo.gl/CMDaXSCdX4pqN8Yx
7

50

https://images.app.goo.gl/2PuBhaFpfdL9Pyjb8
https://images.app.goo.gl/CMDaXSCdX4pqN8Yx7
https://images.app.goo.gl/CMDaXSCdX4pqN8Yx7

Noise, bias, and variance

Bias occurs because the
model lacks precision or
capacity to accurately match
the underlying function.

E.g. optimal fit with 3 hidden
units and 3 line segments51

Noise, bias, and variance

No way to distinguish change in the
true underlying function from noise in
the data.

Variability every time we capture
training data and also from stochastic
learning algorithms. 52

Noise, bias, and variance

53

Least squares regression only

Expectation over noise

in training data
Expectation over

noise in test data Best possible model if
we had infinite data

Actual model
True function

For derivation see Section 8.2.2 in UDL.

More complex interactions between noise, bias and variance in more
complex models.

● We can show that:

• And then:

54

Measuring performance
● MNIST1D dataset model and performance
● Noise, bias, and variance
● Reducing variance
● Reducing bias & bias-variance trade-off
● Double descent
● Curse of dimensionality & weird properties of high dimensional

space
● Choosing hyperparameters

55

Variance

When measuring (capturing) 6
different data samples with a fixed
model (e.g. 3 hidden units), we get
different optimal fits every time.

56

Variance

Can reduce
variance by

adding more
samples

57

Variance

Can reduce
variance by

adding more
samples.

Eventually
hits bias limit.

58

Measuring performance
● MNIST1D dataset model and performance
● Noise, bias, and variance
● Reducing variance
● Reducing bias & bias-variance trade-off
● Double descent
● Curse of dimensionality & weird properties of high dimensional

space
● Choosing hyperparameters

59

Reducing bias
(example with the true function)

We can reduce bias by adding more model capacity.

In this case, adding more hidden units.

Bias

Reducing bias Increases variance!!

Bias

Variance

Why does variance increase? Overfitting

Describes the training data better, but not the true underlying function (black curve)
Many ways to fit a sample of 15 data points

3 Regions

10 Regions

Bias and variance trade-off for the simple linear
model

Number of hidden units

But does picking model capacity
to minimize bias & variance hold
for more complex data and
models?

64

Measuring performance
● MNIST1D dataset model and performance
● Noise, bias, and variance
● Reducing variance
● Reducing bias & bias-variance trade-off
● Preview for next time

65

Train and Test
Error versus # of
Hidden Layers

Training parameters = Training examples

• 10,000 training examples
• 5,000 test examples
• Two hidden layers
• Adam optimizer
• Step size of 0.005
• Full batch
• 4000 training steps

Model has memorized the training set
Why do we say that?

Test error keep
decreasing even as
we keep increasing
model capacity!

Now randomize
15% of the
training labels

Now we see what looks like bias-variance
trade-off as we increase capacity to the

point where the model fits training data.

But then???Reminder: vertical dashed line is where:
training parameters = # training samples

Measuring performance
● MNIST1D dataset model and performance
● Noise, bias, and variance
● Reducing variance
● Reducing bias & bias-variance trade-off

Next Time

● Double descent
● Choosing hyperparameters

Next Time

Measuring Performance

● Double descent - intriguing patterns of test performance getting worse then
better

● Hyperparameter selection

Regularization

● Heuristics to reduce generalization gap (e.g. test vs training error)

Reading

Today:

● Understanding Deep Learning, Chapter 7 Gradients and initialization
● Understanding Deep Learning, Chapter 8 Measuring Performance

For Wednesday:

● Understanding Deep Learning, Chapter 9 Regularization
● For Valid Generalization the Size of the Weights is More Important than the

Size of the Network (skim)
● Train faster, generalize better: Stability of stochastic gradient descent (skim)

https://udlbook.github.io/udlbook/
https://udlbook.github.io/udlbook/
https://udlbook.github.io/udlbook/
https://papers.nips.cc/paper_files/paper/1996/hash/fb2fcd534b0ff3bbed73cc51df620323-Abstract.html
https://papers.nips.cc/paper_files/paper/1996/hash/fb2fcd534b0ff3bbed73cc51df620323-Abstract.html
https://arxiv.org/abs/1509.01240

Feedback?

