BOSTON
UNIVERSITY

Deep Learning for Data Science

DS 542

Lecture 08
Gradients, Initializations,
and Measuring Performance

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com

Today's Plan

e Gradients Recap
o Visualizing 2 Parameter Models
o Backpropagation again

e |Initialization

o Forward and backward behavior
o Derivation of decent initializations

e Measuring Performance

o Train/test splits
o Bias/variance trade offs

Reminder: you should be reading the book chapters too. There are extra readings
for Wednesday - see course web site or end of slides for links.

Visualizing Two Parameter Models

a)
Loss function of the 25 °SS» L(¢]

Gabor model from last
time

(o3}

Visualizing Two Parameter Models

)
Gradients of the loss < °SS» L(¢]

function

(o3}

Backpropagation again

Repeating a couple key points

e Basic mechanics of efficient gradient computation
e Critical to understand initialization

Backpropagation and the Chain Rule

v, = f(v),
oL oL 9v; _ oL 9f(v)
ov; B avj ov; B avj ov; Most common operation
And |ff(Vl) = v, /
ﬂvi B 0\/’] avi B aV] aVi B aVJ aVi lan

What if we have several layers?

Backpropagation with Matrix Operations
If

(k-1) more of these when fully unwound

Initialization

Perhaps an obvious point -

e |Initializing all parameters to zero is degenerate.
All units within a layer will see the same gradients.

All units within a layer will get the same updates.

All units within a layer will represent the same function.
All layers effectively become one wide.

e Generally do not want to start with any symmetries within layers

o Different initializations are opportunities to learn different useful things.
o Motivates random initializations.

o O O O

Initialize weights to different variances

a)

1('100

100D Input
~N(0,1)

1{)71(1(]

e b) 10100 Backward pass
] S
| 0.1 o
= —_—
fo\ [1()” ~ l”D_ » """T"'::::: ________
b -n ~NS T e e
0.01 5 -

1{]71{)0

0.001 //

0

R 00 25
Laver. k Laver. k
Figure 7.4 Weight initialization. Consider a deep network with 50 hidden layers
and Dy, = 100 hidden units per layer. The network has a 100 dimensional input x
initialized with values from a standard normal distribution, a single output fixed
at y = 0, and a least squares loss function. The bias vectors 3, are initialized
to zero and the weight matrices €2 are initialized with a normal distribution
with mean zero and five different variances og € {0.001,0.01,0.02,0.1,1.0}. a)

5¢

Exploding
gradients

<— Vanishing
gradients

Initialization Theory

Any math to guide us to better initializations?

e Exponential growth and shrinkage are predictable from chain rule.

e Can we scale the weights to avoid exponential behavior?
o Goldilocks zone - not too big or too small
o We should be able to calculate a more useful range of initial weights
e Perfect value management not needed

o Want a variety of values and gradients...
o Some hidden units will be inactive sometimes...

Aim: keep variance same between two
layers

f' =3+ Qh
h = alf],

Definition of variance:

of, = E[(f{ — E[fi D?]

Agenda

® The need for weights initialization
® Expectations Refresher

® The He (Kaiming) Initialization

Expectations

E[slel] = [elolPr(z)ds,

Interpretation: what is the average value of g[x] when taking into account the probability of x?

Consider discrete case and assume uniform probability so calculating g[x] reduces to taking average:

N
E{g[m]} = % Z glz) where x, ~ Pr(z)

n=1

Common Expectation Functions

Function gfe] Expectation
i mean, i
L kth moment about zero
(z — p)~ kth moment about the mean
(z — p)* variance
(x — p)? skew
(z — p)* kurtosis

Table B.1 Special cases of expectation. For some functions g[x], the expectation
E[g[x] is given a special name. Here we use the notation p, to represent the mean
with respect to random variable x.

Rules for manipulating expectation

E{k_ — i
E[k g'x': - k.E[g[x]}
E|fle] + gle]| = E|fla]] + E|gla]]
E[f[x}gjyj' - E-f[x]iE[g[y]] if z,y independent

Agenda

® The need for weights initialization
® Expectations Refresher

® The He (Kaiming) Initialization

Aim: keep variance same between two layers

h = alf],
f' =3+ Qh

Definition of variance:

0% = E[(f, — E[f/]))?]

Aim: keep variance same between two layers

f' =3+ Qh
h = alf],

of, = E[(f{ — E[f{D?]

of, = E[f{*] - ELf/]?

Aim: keep variance same between two layers

f' =3+ Qh
h = alf],

of, = E[(f{ — E[f{D?]

of, = E[f{*] - ELf/]?

Aim: keep variance same between two layers
f' =3+ Qh

Consider the mean of the pre-activations:

E[fi] =E |8+) _ Qb

7=1

Rule 1: Elk| =k

Rule 2: E{k-g[x]i -~ k-E[g[:v]]

Rule 3: E[f[x] n g[x]: —E [f[x]} +E [g[w]} <%
|

Rule 4: 7
E[f[a:]g[y] :]E[f[x] E[g[y]} if z,y independent

Rule 1:
Rule 2:
Rule 3:
Rule 4:

E|k| =k
E|k-gle]| = k- E|gle]]

E|fle] + glz]| =E fle]] +E |glz]]
E[f[x]g[y]_ - E[f[x]}ﬁ[g[y]} if 2,y independent

Dy,
E[f]] =E [57; + Zﬁijhj]

J=1

Dy,
=E[B;]+ Y E[Q;h,]

=1

=E[8] + iE [€2;] E [hy]

E[f[x]g[y]: :]E[f[x] E[g[y]} if 2,y independent

Set all the biases to 0

Weights normally distributed
mean 0

variance g3

Aim: keep variance same between two
layers

f' =3+ Qh
h = alf],

of, = E[(fi — E[f;])?]

of, = E[f?] - E[f/]* = E[f;”]

N

Rule 1: E k_ =k
Rule 2: E{k glz]| =k - E[g[z]}
Rule 3: {ﬂ+gH'ZEFm}+EkMﬂ

Rule 4: E[

flx g[y] :]E[f[x]}E[g[y]} if z,y independent

ot =E[f*] - E[f]]*

-Dh

=K B8; + Z Qijhj —0
Jj=1

Set all the biases to 0

Weights normally distributed
mean O

variance g3

g [y]| :E[f[x]}ﬁ[g[y]} if 2,y independent

Dy, 2
j=1
- 2
Dh
=K (Qijhj
Set all the biases to 0 I Jj=1

Weights normally distributed
mean O
variance g3

Rule 1: K|kl =k

Rule 2: E{k’ gla]] =& E[g[fv]]
Rule 3:] :

Rule 4:

flalgly]| = E[f]|E[al)] if @y

independent | <l ——

Set all the biases to 0 =1
Dy, /
2

Weights normally distributed - Z E [Qw] E [hﬂ
mean 0 j=1

variance g3

For all the cross terms,
E[.Q.ij] = 0 so only the
squared terms are left, then
use independence.

Rule 3 E[f[x +glz]| =E [f[w]} +E {g[w]}
Rule 4 "
E [f[a:] g[y] =E [f[m]} E [g[y]} if z,y independent
2 2 2
oy = E[fi"] — E[f]]
Dy, 2
=5 /Bz + Z Qij hj —0
j=1
- 2
Dy,
=E ||) Qh;
Set all the biases to 0 Jj=1
Dy,
Because the ()’s are zero
_ 2 2
Weights normally distributed - E [Qw] E [hj] mean, this is the
mean 0 J=1 } variance.
variance g3 Dy, Dy,

|
Q
@)

Dy o
2 Z / ReLU[fj]QPT(fj)dfj <@— From the definition of

—00 expectation.

Dh o0 A . . .
Only positive integral limits
2 2 4—
—0q E / fj Pr(fj>dfj because of RelLU
j=1"0
Dr, 02 D 0‘2 0‘2 % of the variance for zero mean
=09 5 9 distribution

Aim: keep variance same between two layers

Since:

Should choose:

2
UQ =
Dy,
To get:
2 _ 2
O'f, = O-f
This is called or after Kaiming He ({a]2ER).

K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” Proc. IEEE International Conference on
Computer Vision, 2015, pp. 1026-1034. Accessed: Feb. 11, 2024.

He initialization (assumes RelLU)

e Forward pass: want the variance of hidden unit activations in layer k+1 to be

the same as variance of activations in layer k:
5 2

[0} = —

¢ Dy

Number of units at layer
k

e Backward pass: want the variance of gradients at layer k to be the same as
variance of gradient in layer k+1:

2
Number of units at layer

Dh,’ k+1

0 =

Initialization with Non-Square Matrices

2 2

or ?
D, Dy

Compromise:

4
D, + Dy,

Not quite the average. Maybe an argument to keep hidden layer sizes uniform?

a) Lg100 Forward pass b) 1100 Backward pass
01 [Exploding
o s <) e gradients
as 0 AL R 100 i
© —l N [T R —— — o
0.01 S [e e <—— Vanishing
- / gradlents
1()*10(] ' ' ' ' ' ' ' 1{']*100 . ' ' ' '
0 25 50 0.0 25 5¢
Layer, k Layer, k
Figure 7.4 Weight initialization. Consider a deep network with 50 hidden layers 0.2 — 2 — 2 = 0.02
and Dj, = 100 hidden units per layer. The network has a 100 dimensional input x Q2 D h 100 ‘

initialized with values from a standard normal distribution, a single output fixed
at y = 0, and a least squares loss function. The bias vectors 3, are initialized
to zero and the weight matrices €2 are initialized with a normal distribution
with mean zero and five different variances og € {0.001,0.01,0.02,0.1,1.0}. a)

Default Initialization in PyTorch

https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming uniform

torch.nn.init.kaiming_uniform_(tensor, a=6, mode='fan_in', nonlinearity="'leaky_relu’,
generator=None) [SOURCE]

Fill the input Tensor with values using a Kaiming uniform distribution.

The method is described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification -
He, K. et al. (2015). The resulting tensor will have values sampled from U (—bound, bound) where

3
fan_mode

bound = gain X

Also known as He initialization.

https://arxiv.org/abs/1502.01852

https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_uniform_
https://arxiv.org/abs/1502.01852

Initialization Note

A good initialization does not prevent gradient descent from changing the weights
a lot.

A good initialization keeps the initial gradients modestly sized,
And modest gradients reduce wild swings in parameters with gradient descent
Smaller learning rates also help with this.

[
o
[
e Next week’s topic, regularization, will directly address this.

Limitations of Initialization

e No guarantees that the model will train to low losses
No guarantees that training process won't lead to large values or gradients

e No guarantees that the model won'’t have lots of inactive units
o In fact, the estimates adjusted for half being inactive!

e In fact, much of the network is often useless, and could be pruned away!

The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks

Neural network pruning techniques can reduce the parameter counts of trained networks by over 90%, decreasing
storage requirements and improving computational performance of inference without compromising accuracy.
However, contemporary experience is that the sparse architectures produced by pruning are difficult to train from the
start, which would similarly improve training performance.

We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them capable of
training effectively. Based on these results, we articulate the "lottery ticket hypothesis:" dense, randomly-initialized,
feed-forward networks contain subnetworks ("winning tickets") that - when trained in isolation - reach test accuracy
comparable to the original network in a similar number of iterations. The winning tickets we find have won the
initialization lottery: their connections have initial weights that make training particularly effective.

We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket
hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less than
10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and CIFAR10.
Above this size, the winning tickets that we find learn faster than the original network and reach higher test accuracy.

https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1803.03635

Measuring Performance

How do we do it?

MNIST Dataset

e 28x28x1 grayscale
images

e 60K Training, 10K Test

e “Is to Deep Learning
what fruit flies are to
genetics research”

0 o R

label=0 label=1 label=2 label=3 label=4 Ilabel=5 label=6 Ilabel=7 label=8 label=9

1017121317 s[e[7] 5[5

But poorly differentiates model performance:

Model Type

Logistic Regression
MLP
CNN

Accurac
Yy

94%
99+%
99+%

MNIST1D

Scaling down Deep Learning

Sam Greydanus !

“A large number of deep learning innovations including dropout,

Adam, convolutional networks, generative adversarial networks, and variational
autoencoders began life as MNIST experiments. Once these innovations proved
themselves on small-scale experiments, scientists found ways to scaleithem to
larger and more impactful applications.”

S. Greydanus, “Scaling down Deep Learning.” arXiv, Dec. 04, 2020. doi:
10.48550/arXiv.2011.14439.

https://github.com/greydanus/mnistld

https://doi.org/10.48550/arXiv.2011.14439
https://github.com/greydanus/mnist1d
https://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1412.6980
http://yann.lecun.com/exdb/publis/pdf/lecun-89e.pdf
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114

MNIST 1D Dataset

Original MNIST examples
label=0 label=1 label=2 label=3 label=4 Ilabel=5 label=6 label=7 label=8 label=9

ol/]213171516]71219

Represent digits as 1D patterns

Fixed, 1-D, length-12
templates for each of 10

digit classes

Pad, translate & transform

Generate dataset by
programmatically applying
6 parametric
transformations.

E.g. pad, shear, translate, correlated noise, i.i.d. noise,
interp0|ation' See https://github.com/greydanus/mnist1d/blob/master/building_mnistld.ipynb

https://github.com/greydanus/mnist1d/blob/master/building_mnist1d.ipynb

MNIST 1D

Test accuracy

100 -
80 A
Differentiates performance of different
model types much more than MNIST 60
40 A
20 A
e [0QIStIC == mip — CNN — QU — hUMan
= = shuffle = = shuffle = = shuffle = = shuffle
O T 1 T T 1 T T
0 1000 2000 3000 4000 5000 6000
Train step
Dataset Logistic regression Fully connected model = Convolutional model ~GRU model = Human expert
MNIST 944+ 0.5 > 99 > 99 > 99 > 99
MNIST-1D s % e i | 68 + 2 94 4 2 gl -2 g6+ 1
MNIST-1D (shuffled) 32+1 68 4+ 2 56 + 2 arLt2 ~ 30410

Results

0 Training step

Train
6000

Loss

43

0.0t
0

Training step

Train / Test Splits

When training a model, reserve a sample to test the performance when you are
done training.

e COiriginal training data — train + test sets.

e Use train set to fit the model.
e Use test set to check the final result.

e Adapting to errors in the test is a good way to overfit your model.

MNIST1D Train and Test Set Dataset Samples

label=2 label=9 label=3 label=5 label=7 label=3 label=6 Ilabel=8 label=1 Ilabel=3

e LU LA A

® 4,000 training samples
label=1 label=8 label=6 label=7 label=8 label=3 label=5 label=3 Ilabel=2 Ilabel=0

e 1000 ot samples (30720 i 4} 2 % } ? éz % ; é

label=1 label=2 label=0 label=9|5label=7 label=9 label=1 label=8 label=4 Ilabel=5

QAR

Need to use separate test data

a) 100 b) 3.0
Test
O
= 2 |
'-';' _ Test 9
N
(@]
0 ' Train 00 46 Train
0 Training step 6000 0 Training step 600C

The model has not generalized well to the new data

Train / Validation / Test Splits

More advanced methodology

e COiriginal training data — train + validation + test sets.

e Use train set to fit the model.
e Use validation set to make decisions about fitting the model.
e Use test set to check the final result.

Sources of Error

Three possible sources of
error: , and

. blas, and variance

Noise

Qutput, y

 Genuine stochastic nature of the

underlying model
* Noise in measurements, e.g. from sensors

 Some variables not observed
e Data mislabeled

Filters

9 Pz
® ady
o -
o %

T 1.0 ‘?“3‘7 O:. oy

rrayof | =™ =, —
MOS | A =M. =N
Image 2 b 4

Ll e T

https://images.a

Conversion to
RGB Color Voltage /N‘b
/\/\ Digital

sssssssssssssssss

nversion

.800.g1/2PuBhaFpfdL9Pyjb8

https://images.a
A

© Merriam-Webster Inc.

.800.gl/CMDaXSCdX4pagN8Yx

https://images.app.goo.gl/2PuBhaFpfdL9Pyjb8
https://images.app.goo.gl/CMDaXSCdX4pqN8Yx7
https://images.app.goo.gl/CMDaXSCdX4pqN8Yx7

Noise,

Output, y

. and variance

Bias

:/ \ |
&/
0.0 0.5 1.0 0.0 0.5 1.0
Input, x

Input, x

occurs because the

model lacks precision or
capacity to accurately match

the underlying function.

E.g. optimal fit with 3 hidden
Junits and 3 line segments

Noise, bias, and

c) Variance

No way to distinguish change in the

true underlying function from noise in] /\
the data. / \
Variability every time we capture ’ _/

training data and also from stochastic _
52

learning algorithms. do " o5 N
Input, x

Noise, bias, and variance

a) Noise b) Bias

Variance

Y T T T T T

Least squares regression only

Llz] = (flz,] — yla])’
® \We can show that:
E,[Ll2]] = (ffo, @] — pla])” + 07
* And then:

Ep |E,[Ll])| = o |(flz, D] - fulal)®] + (Jule] —pla])’ + o2

N >4 VO .
e : noise
/ variance y bias
Expectation over noise

Expectation over
in training data Best possible model if True function

noise in test data Actual model e
we had infinite data

More complex interactions between noise, bias and variance in more
complex models.

Measuring performance

® MNIST1D dataset model and performance
® Noise, bias, and variance

® Reducing variance

® Reducing bias & bias-variance trade-off

® Double descent

® Curse of dimensionality & weird properties of high dimensional
space

® Choosing hyperparameters

55

Variance

)

Output, i

Output, y

5 samples

=z .

(R
e L

OuLEuL, Yy

o,
B

Qulpul, v

When measuring (capturing) 6
different data samples with a fixed
model (e.g. 3 hidden units), we get
different optimal fits every time.

56

Variance

o

6 samples e)

10 samples

.

Outpyt, iy

/ _/

Can reduce

variance by

adding more
samples

57

a)} . 6 samples e) 10 samples i) 100 samples
. - Vo e
Variance :.; / \ 7N
S / _/ ' \~_ ___/'I
b)\o | - | f | | | | i) M | | |
. //\ /~\ 5 Can reduce
5. 7 i\ .
goo / N variance by
S A Ny W .
-+ 9 adding more
9 g k) samples.
Ve /\ SN
£y AT _/ : \ev.. 5 .Eveptuglly.
| A N hits bias limit.
d)lf} h) I)
2“ /\ /\ /\
£y % 4)
N ~— S——
|nF;Jt I o |nDil; Y 100 Inpoui. ¥

Measuring performance

® MNIST1D dataset model and performance
® Noise, bias, and variance

® Reducing variance

® Reducing bias & bias-variance trade-off

® Double descent

® Curse of dimensionality & weird properties of high dimensional
space

® Choosing hyperparameters

59

Reducing bias
(example with the true function)

3 regions

b)

5 regions c)

10 regions

0.5

05 ‘ 1000

In this case, adding more hidden units.

We can reduce bias by adding more model capacity.

Reducing bias Increases variance!!

a)l , 3 regions b) 5 regions c) 10 regions
= ///—\
":-'-; !
)
—
O]
B I : — — —_—
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 (
d) e f)
1.0
>
5
A 0.0
-
3
©)
1.0 . _ — i — 4
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 K
Input, = Input. =

Input.

Why does variance increase?

b) c)

R e e ™ - -
0 0.5 1.00.0 0.5 000 0.5

A 7
> 1 "
S (8 L \,A e

I.{

1000 = 05
Input, z

o5 " 1odo " o5
Input, Input, x
Describes the training data better, but not the true underlying function (black curve)

Many ways to fit a sample of 15 data points

Bias and variance trade-off for the simple linear

model
0.5
% | oFe—=0
o5 o / \
Q \ 1
bt \‘]))
S \ / Eo By [Llr]] = Bo (e, 91P]) ~ £ule)"| + (fulel —nir)" + 22,
=1 \ - . bias noise
m ‘ ' variance

\ s
(- u . . /,
S \ bias+variance _-
> bras . _____ ==

.- variance

0.0

Model capacity

|7 <@ Number of hidden units

But does picking model capacity
to minimize bias & variance hold
for more complex data and
models?

Measuring performance

MNIST1D dataset model and performance
Noise, bias, and variance

Reducing variance

Reducing bias & bias-variance trade-off
Preview for next time

65

Train and Test
Error versus # of
Hidden Layers

10,000 training examples
5,000 test examples

Two hidden layers

Adam optimizer

Step size of 0.005

Full batch

4000 training steps

| MNISTID no label noise

40 | l /
\

* Hidden layer size

100 200 300 400

Test error keep
decreasing even as
we keep increasing
model capacity!

Training parameters = Training examples

Model has memorized the training set

Now randomize

150/0 Of the Eém
training labels '“f

[MNISTID no label noise

60 A

100 200 300

Hidden layer size

o ~
< =)

Error (%} |

r;.i

o

MNIST1D 15% label noise

N

w

160 200 300
Hidden layer size

Now we see what looks like bias-variance
trade-off as we increase capacity to the
point where the model fits training data.

Reminder: vertical dashed line is where:
training parameters = # training samples

But then???

Measuring performance

e MNIST1D dataset model and performance

e Noise, bias, and variance

e Reducing variance

e Reducing bias & bias-variance trade-off
Next Time

e Double descent
e Choosing hyperparameters

Next Time

Measuring Performance

e Double descent - intriguing patterns of test performance getting worse then
better
e Hyperparameter selection

Regularization

e Hoeuristics to reduce generalization gap (e.g. test vs training error)

Reading

Today:

e Understanding Deep Learning, Chapter 7 Gradients and initialization
e Understanding Deep Learning, Chapter 8 Measuring Performance

For Wednesday:

e Understanding Deep Learning, Chapter 9 Regularization
e For Valid Generalization the Size of the Weights is More Important than the

Size of the Network (skim)
e Train faster, generalize better: Stability of stochastic gradient descent (skim)

https://udlbook.github.io/udlbook/
https://udlbook.github.io/udlbook/
https://udlbook.github.io/udlbook/
https://papers.nips.cc/paper_files/paper/1996/hash/fb2fcd534b0ff3bbed73cc51df620323-Abstract.html
https://papers.nips.cc/paper_files/paper/1996/hash/fb2fcd534b0ff3bbed73cc51df620323-Abstract.html
https://arxiv.org/abs/1509.01240

Feedback?

